IMDD vs Coherent Will Datacenter be the New Battleground?

Summer Topicals 2020 Virtual Conference Tutorial TuA2.2 10:45AM – 11:30AM MDT 14 July 2020 Chris Cole

Outline

NRZ vs HOM

- Serial vs WDM
- Coherent in Telecom
- Coherent in Datacom
- IMDD vs Coherent SNR
- Intra Datacenter Optics
- Appendices

Shannon-Hartley Theorem

- $C = B \log 2 (1 + S/N)$
 - $C \triangleq Channel capacity$
 - $B \triangleq Bandwidth$
 - $S \triangleq$ Signal Power
 - $N \triangleq Noise Power$

Guidance to increase C:

If B limited, use S/N to increase modulation order

If S/N limited, use B to increase Baud rate

C. Cole, "SMF PMD Modulation Observations", 400 Gb/s Ethernet Task Force, IEEE 802.3 Plenary Session, Berlin, Germany, 10-12 March 2015cc

Cu C2C SerDes & SMF Client TRX S/N (BtB, no FEC)

HOM ≜ Higher Order Modulation

4

```
Ideal SMF Client System Model
```


5

- SMF client channel ideal
- (TX * Channel * RX) modelled as 4th order BT filter
- $B = \alpha$ bit-rate
- Ex. bit rate = 56Gb/s

ex. 1: $\alpha = 0.25 \rightarrow B = 14GHz$ ex. 2: $\alpha = 0.30 \rightarrow B = 17GHz$

Slicer Input Eyes of Ideal Noiseless SMF Client System

Ex. 1. α = 0.25 (14GHz) NRZ VEC \approx PAM4 VEC

Ex. 2. α = 0.30 (17GHz) NRZ VEC < PAM4 VEC

Vertical Eye Closure at Slicer Input w/ Noise Normalization

7

IEEE Modulation Choice for 50Gb/s and Faster Rates

- Optics is the tail on the IC industry dog
 - 50G PAM4 ASIC SerDes was first developed for the Cu channel
 - IC Vendors wanted to maximize their ADC and DSP investment
- IC dog wagged the optics tail
 - IEEE ignored Shannon
 - PAM4 standardized for 50G and 100G Ethernet optical lane rates
 - 200G (4x50G PAM4) FR4 will soon ship in the millions
- Optics & electronics today easily support 50G NRZ
 - Extra cost and power of 50G PAM4 ADC, DSP, SNR locked-in forever

Outline

NRZ vs HOM

Serial vs WDM

- Coherent in Telecom
- Coherent in Datacom
- IMDD vs Coherent SNR
- Intra Datacenter Optics
- Appendices

Ethernet Optics History: 1 & 10GbE

- 1GbE standard adopted in 1998
 - 1λ Serial NRZ (LX)
 - Shipped in the millions
- 10GbE standard adopted in 2002
 - 4λ WDM NRZ (LX4)
 - 1λ Serial NRZ (LR4)
 - 5-year delay in 10GbE adoption after 90's Tech bubble collapse
 - 10GBaud optics & electronics matured to easily support 10G NRZ
- 10G LR4 shipped in the millions
- 10G LX4 became a sad footnote in Ethernet optics history
- "Serial is always cheaper" myth is born

Ethernet Optics History: 40GbE

- 40GbE standard adopted in 2010
 - "Serial is always cheaper" myth well established
 - Fierce debate in the IEEE between:
 - 4λ WDM NRZ (LR4) vs.
 - 1λ Serial NRZ (FR)
 - IEEE split the baby, adopted both
- 40G LR4 shipped in the millions
- 40G FR became a sad footnote in Ethernet optics history

11

Ethernet Optics History: 100GbE

- 100GbE standard, targeted at the datacenter, adopted in 2015
 - "Serial is always cheaper" myth going strong
 - Fierce debate in the IEEE about duplex SMF spec between:
 - 4λ CWDM NRZ (FR4)
 - 1λ Serial PAM16/8 (FR)
 - IEEE could not reach agreement, and neither was adopted
- 100G CWDM4 spec developed immediately after in an MSA in 6 months
 - Shipped in the millions
- 100G PAM16/8 became a sad footnote in Ethernet optics history
- \$240M SNR math lesson for Cisco

Ethernet Optics History: 400GbE

- 400GbE standard adopted in 2017
 - "Serial is always cheaper" myth unwavering
 - Fierce debate in the IEEE between:
 - 2 λ *50G WDM for 100G FR2 and 8 λ *50G LWDM 400G LR8
 - $1\lambda^*100G$ Serial for 100G FR and 400G PSM DR4
 - IEEE split the baby, adopted 400G LR8 and DR4, but no 100G FR2
- 400G 8λ *50G LWDM LR8 shipped in low volume into early Telecom apps
- 400G 4λ*100G CWDM FR4 standardized soon afterwards

Ethernet Optics History: 400GbE (2)

- Ethernet optics sad story 1: no Web2.0 deployment of 400GbE
 - Huge industry R&D investment into 1st Gen 400GbE FR4 with no ROI
 - 2nd Gen 400GbE FR4 will start shipping in volume in 2023 or later when Ethernet switches ship with 100G I/O
- Ethernet optics sad story 2: no low-cost, low-power 2λ 100GbE optics matched to today's Ethernet switches with 50G I/O, forcing shipment of:
 - 4λ 100G CWDM4 with 1:2 reverse gearbox (most Web2.0s), or
 - 1λ 100G FR with with 2:1 forward gearbox (Amazon mainly)
 - Either way, significant cost and power added to 100G Ethernet optical links

Outline

- NRZ vs HOM
- Serial vs WDM

Coherent in Telecom

- Coherent in Datacom
- IMDD vs Coherent SNR
- Intra Datacenter Optics
- Appendices

G.652 SMF DWDM Transport C-band Spec Limits

• Loss

- nom, max: 0.2, 0.28dB/km
- IF link SNR was only determined by link loss
 - Coherent SNR \approx 2x IMDD SNR, in dB
 - Coherent reach \approx 2x IMDD reach, i.e. half the amplifier cost
- Bandwidth (B)
 - Spectral Efficiency is key metric because of fiber deployment cost
 - G.694.1 channel bandwidths: 25 to 100GHz
 - Coherent has 4 orthogonal channels: I, Q, TE, TM
 - Shannon says: If B limited, use S/N to increase modulation order

G.652 SMF DWDM Transport C-band Spec Limits (2)

- Chromatic Dispersion (CD)
 - nom, max: 17, 20ps/nm-km
 - · CD penalty variable with link reach
 - IMDD Fixed EQ: unique CDF length for each link
 - Coherent adaptive EQ: common for all links
- Polarization Mode Dispersion Q (PMDQ)
 - A&C nom: 0.5ps/√km
 - B&D nom: 0.2ps/√km
 - DGD is important over long reaches
 - Coherent adaptive EQ tracks polarization

Transport Cost vs Time

10G - 40G: IMDD 100G - 800G: Coherent

"A straight line will continue indefinitely as a straight line"

Optical Networks Forecast: 2018 – 2023, Jan 2019 Representative cost of optical transport capacity over time and transponder generations based on historical average sales price (ASP) of DWDM line card data from Ovum.

Outline

- NRZ vs HOM
- Serial vs WDM
- Coherent in Telecom

Coherent in Datacom

- IMDD vs Coherent SNR
- Intra Datacenter Optics
- Appendices

19

G.652 1km SMF CWDM4 O-band Spec Limits

• Loss

- max: 0.47dB
- Connectors and other passives determine link loss
- Nom link loss budget: 4dB
- SMF loss is not important
- Bandwidth (B)
 - 4 wavelength band: 10THz
 - 1 wavelength channel: 800GHz
 - Shannon says: If S/N limited, use B to increase Baud rate
 - SMF bandwidth is not important

G.652 1km SMF CWDM4 O-band Spec Limits (2)

- Chromatic Dispersion (CD)
 - min: -6ps/nm
 - max: 3ps/nm
 - SMF CD penalty is not important
- Polarization Mode Dispersion Q (PDM_Q)
 - A&C nom: 0.5ps
 - B&D nom: 0.2ps
 - SMF DGD penalty is not important

Outline

- NRZ vs HOM
- Serial vs WDM
- Coherent in Telecom
- Coherent in Datacom

IMDD vs Coherent SNR

- Intra Datacenter Optics
- Appendices

Direct Detection (DD) Signal Path

р _{IN-TX}	$= 4 p_0$	p _{RX}	$= \alpha_{SMF} p_{TX}$
p _{TX}	$= \alpha_{AOP} \alpha_{TX} p_{IN-TX}$	p _{PD}	$= \alpha_{RX} p_{RX} / 4$
İ _{SIG}	$= \alpha_{OMA} r_{PD} p_{PD}$	i _N	$= \alpha_N i_0 \sqrt{BW}$
√snr	$= i_{SIG} / i_N = \alpha_{OMA} \alpha_{RX} \alpha_{SMF} \alpha_{SMF}$	$\alpha_{AOP} \alpha_{TX}$	$r_{PD} p_0 / (\alpha_N i_0 \sqrt{BW})$

C. Cole, "Inside the Datacenter is not yet a Nail for the Coherent Hammer", WS05, Data Centers 1, Session 1, ECOC 2018, Rome, Italy, 23 Sep. 2018.

Coherent (CH) Signal Path

 $\begin{array}{ll} p_{\text{IN-TX}} &= 4 \; \alpha_{\text{LS}} \, \alpha_{\text{TEC}} \, p_0 & p_{\text{RX}} &= \alpha_{\text{SMF}} \, \alpha_{\text{TX}} \\ p_{\text{TX}} &= \alpha_{\text{G}} \, \alpha_{\text{OMA}} \, \alpha_{\text{TX}} \, p_{\text{IN-TX}} & p_{\text{PD-RX}} &= \alpha_{\text{RX}} \, p_{\text{RX}} / 4 \\ p_{\text{LO}} &= p_{\text{IN-LO}} &= 4 \left(1 - \alpha_{\text{LS}}\right) \, \alpha_{\text{TEC}} \, p_0 & p_{\text{PD-LO}} &= \alpha_{\text{LO}} \, p_{\text{LO}} / 4 \\ i_{\text{SIG}} &= \alpha_{\text{OMA}} \, r_{\text{PD}} \, 2 \, \sqrt{(p_{\text{PD-RX}} \, p_{\text{PD-LO}})} & i_{\text{N}} &= \alpha_{\text{N}} \, i_0 \, \sqrt{\text{BW}} \\ \sqrt{\text{snr}} &= i_{\text{SIG}} \, / \, i_{\text{N}} &= \alpha_{\text{OMA}} \, \alpha_{\text{RX}} \, \sqrt{(\alpha_{\text{SMF}} \, \alpha_{\text{G}} \, \alpha_{\text{AOP}} \, \alpha_{\text{TX}})} \, \alpha_{\text{TEC}} \, r_{\text{PD}} \, p_0 \, / \, (\alpha_{\text{N}} \, i_0 \, \sqrt{\text{BW}})$

Optical Δ SNR_{DD-CH} = SNR_{DD} - SNR_{CH} dB

 \triangleq loss in optical -dB Α $= -10\log_{10}(\alpha)$ Α $\Delta SNR_{DD-CH} = SNR_{DD} - SNR_{CH} = 10\log_{10}(snr_{DD} / snr_{CH})$ $\Delta SNR_{DD-CH}/2 = - (A_{AOP-DD} + A_{TX-DD} + A_{SMF})$ + $(A_{AOP-CH} + A_{TX-CH} + A_G + A_{SMF})/2 + A_{TFC}$ - $(A_{OMA-DD} + A_{RX-DD} - A_{N-DD})$ + $(A_{OMA-CH} + A_{RX-CH} - A_{N-CH})$ $A_{TXT-DD} = A_{AOP-DD} + A_{TX-DD}$ $A_{RXT-DD} = A_{OMA-DD} + A_{RX-DD} - A_{N-DD}$ $A_{TXT-CH} = A_{AOP-CH} + A_{TX-CH} + A_G + 2A_{TEC} \qquad A_{RXT-CH} = A_{OMA-CH} + A_{RX-CH} - A_{N-CH}$ $\Delta SNR_{DD-CH} = (A_{TXT-CH} - 2A_{TXT-DD}) - A_{SMF} + 2(A_{RXT-CH} - A_{RXT-DD})$

Optical Δ SNR_{DD-CH} dB Link Loss Examples

• Equal laser input AOP (TEC ignored):

 $\Delta SNR_{DD-CH} = (A_{TXT-CH} - 2A_{TXT-DD}) - A_{SMF} + 2(A_{RXT-CH} - A_{RXT-DD})$

• IMDD: 100G EML NRZ CWDM4

 $A_{TXT-DD} = 5dB$ $A_{RXT-DD} = 2dB$

Coherent: 100G SiPIC QPSK

 $A_{TXT-CH} = 17dB$ $A_{RXT-CH} = 4dB$

- $A_{SMF} = 4dB$ (2km, typical intra datacenter)
- A_{SMF} = **11dB** (20km, or 2km w/ 7dB switch loss)
- $A_{SMF} = 18dB$ (40km, or 2km w/ 14dB switch loss)

 $\Delta SNR_{DD-CH} = 7dB$ $\Delta SNR_{DD-CH} = 0$ $\Delta SNR_{DD-CH} = -7dB$

Outline

- NRZ vs HOM
- Serial vs WDM
- Coherent in Telecom
- Coherent in Datacom
- IMDD vs Coherent SNR

Intra Datacenter Optics

• Appendices

Intra Datacenter Optics Requirements

- What's important?
 - Cheap laser(s)
 - Cheap SNR (low loss components)
 - Cheap assembly and packaging
 - Cheap testing
- What does Coherent offer?
 - Expensive Laser
 - High loss components
 - Best case comparable packaging cost to IMDD

28

• Complex testing

TX Modulator Size Comparison

- IMDD InP EML length:
 - 400 500um (EA ≈ 120um)
- Coherent Si MZM length:
 - 2 4mm
- 4 channel Coherent to IMDD TX area ratio:
 - 10 20x

Teriphic project, 4x100G PAM4 EML TX

29

Intra Datacenter Optics Today: Pluggable

- Characteristics
 - \$1 \$2/Gb
 - ~30pJ/bit
 - IMDD DML or EML uncooled TX
 - + 4 λ CWDM NRZ or PAM4
 - Link budget: 4dB
- IMDD vs. Coherent SNR, equal laser DC Power (TEC included): 100G EML NRZ CWDM4 IMDD vs 100G SiPIC QPSK Coherent

 $\Delta SNR_{DD-CH} = 11.5dB$

(same result for PAM4 IMDD vs QAM16 Coherent)

Intra Datacenter Optics Tomorrow: Co-packaged

- Requirements
 - Co-packaged with Ethernet Switch ASIC
 - 256 512 data lanes
 - <\$1/Gb
 - <10pJ/bit
 - Link budget: 4dB
- IMDD vs. Coherent SNR, equal laser DC Power (TEC included): 100G SiPIC NRZ CWDM4 IMDD vs 100G SiPIC QPSK Coherent

 $\Delta SNR_{DD-CH} = 1.5dB$

(same result for PAM4 IMDD vs QAM16 Coherent)

Summary

- Coherent advantages in Transport are unimportant in Intra Datacenter
- Coherent indefinitely locks in the cost and power of ADCs and DSPs
 - This is what PAM4 did for >100G Ethernet optics
 - Good for IC vendors, bad for everyone else as optics improve
- "Serial is always cheaper" is a myth for leading data rates
 - 10GbE was the last time it was true
 - 1 λ Coherent is higher cost and power than 4 λ IMDD
- Coherent does not reduce the cost and power of short reach optics
- There is no IMDD vs Coherent competition for Intra Datacenter links
 - Coherent is not even on the battleground

IMDD vs Coherent

Thank You

www.ieee-sum.org

IEEE Photonics Society Summer Topicals 2020 TuA2.2

33

14 July 2020

Chris Cole

Outline

- NRZ vs HOM
- Serial vs WDM
- Coherent in Telecom
- Coherent in Datacom
- IMDD vs Coherent SNR
- Intra Datacenter Optics
- Appendix 1

Direct Detection (DD) Signal Path Variables

- $p_0 \triangleq Input POP$ (Peak Optical Power) reference
- $p_{IN-TX} \triangleq TX \text{ input POP} = AOP (Average OP) if CW$
- $\alpha_{AOP} \triangleq TX POP$ to AOP modulation loss vs. er (extinction ratio)
- $\alpha_{TX} \triangleq TX$ path intrinsic loss at modulator bias point
- $p_{TX} \triangleq TX \text{ total output AOP}$
- $\alpha_{SMF} \triangleq Link total power loss (connectors, SMF, other passives)$
- $p_{RX} \triangleq RX$ total input AOP
- $\alpha_{RX} \triangleq RX$ path intrinsic loss
- $p_{PD} \triangleq RX PD input AOP$
- $r_{PD} \triangleq RX PD$ responsivity
- $\alpha_{OMA} \triangleq PD AOP$ to average electrical signal power loss vs. er

Direct Detection (DD) SNR

- $v_{MD} \triangleq TX$ modulator drive voltage
- $i_{SIG} \triangleq RX PD signal current$
- $i_{SIG} = \alpha_{OMA} r_{PD} p_{PD} = \alpha_{OMA} \alpha_{RX} \alpha_{SMF} \alpha_{AOP} \alpha_{TX} r_{PD} p_0$
- $i_N \triangleq RX$ input referred noise current; all sources
- $i_0 ext{ } \triangleq RX ext{ input noise current density reference}$
- $\alpha_N \triangleq RX$ input noise current loss vs. i_0
- BW \triangleq RX input noise bandwidth
- $i_N = \alpha_N i_0 \sqrt{BW}$

snr = $(i_{SIG} / i_N)^2$ $\sqrt{snr} = \alpha_{OMA} \alpha_{RX} \alpha_{SMF} \alpha_{AOP} \alpha_{TX} r_{PD} p_0 / (\alpha_N i_0 \sqrt{BW})$

Coherent (CH) Signal Path Variables

- $p_0 \triangleq Input POP (Peak Optical Power) reference$
- $\alpha_{TEC} \triangleq$ Input POP loss due to laser TEC current power
- $\alpha_{LS} \triangleq TX$ input POP loss due to (1- α_{LS}) LO (Local Oscillator) input split
- $p_{IN-TX} \triangleq TX \text{ input POP} = AOP \text{ since } CW$
- $\alpha_{AOP} \triangleq TX POP$ to AOP modulation loss vs. v_{MD} (mod. drive voltage)
- $\alpha_{TX} \triangleq TX$ path intrinsic loss at modulator bias point
- $\alpha_G \triangleq TX$ optical gain ($\alpha_G = 1$ if no amplification)
- $p_{TX} \triangleq TX \text{ total output AOP}$
- $\alpha_{SMF} \triangleq Link total power loss (connectors, SMF, other passives)$

Coherent (CH) Signal Path Variables, cont.

- $p_{RX} \triangleq RX \text{ total input AOP}$
- $p_{LO} \triangleq RX LO input AOP$
- $\Phi(t) \triangleq$ Phase angle between p_{RX} and p_{LO} electric fields
- $\alpha_{RX} \triangleq RX SIG path intrinsic loss$
- $\alpha_{LO} \triangleq RX LO path intrinsic loss$
- $p_{PD} \triangleq RX PD input AOP$
- $r_{PD} \triangleq RX PD responsivity$
- $\alpha_{OMA} \triangleq PD AOP$ to average electrical signal power loss vs. v_{MD}

Coherent Signal Addition

Optical signals, with same polarization state, add in the electric field domain

 E_{10}/\sqrt{Z} $\triangleq \sqrt{p_{IO}}$ E_{RX}/\sqrt{Z} $= \cos \Phi(t) \sqrt{p_{RX}} + i \sin \Phi(t) \sqrt{p_{RX}}$ $= \sqrt{p_{IO}} + \cos \Phi(t) \sqrt{p_{RX}} + i \sin \Phi(t) \sqrt{p_{RX}}$ E_{PD} / √Z = $(\sqrt{p_{LO}} + \cos \Phi(t) \sqrt{p_{RX}})^2 + (\sin \Phi(t) \sqrt{p_{RX}})^2$ PPD $= p_{IO} + 2\sqrt{p_{IO}}\sqrt{p_{RX}}\cos\Phi(t) + p_{RX}$ $<< 2 \sqrt{p_{IO}} \sqrt{p_{RX}} \cos \Phi(t)$ **P**_{RX} $<< 2 \sqrt{p_{IO}} \sqrt{p_{RX}} \cos \Phi(t)$ p_{10} RIN = $2\sqrt{(p_{IO} p_{RX})} \cos \Phi(t)$ PPD

Coherent (CH) SNR

 \triangleq TX mod. drive voltage V_{MD} ≜ RX balanced PD pair signal current I_{SIG} $= \alpha_{OMA} r_{PD} 2 \sqrt{(p_{PD-RX} p_{PD-LO})} \cos \Phi(t)$ İ_{SIG} $\cos \Phi(t) \triangleq 1$ $\alpha_{LS} \triangleq \frac{1}{2}$ $\alpha_{LO} \triangleq \alpha_{RX}$ = $\alpha_{OMA} \alpha_{RX} \sqrt{(\alpha_{SMF} \alpha_G \alpha_{AOP} \alpha_{TX})} \alpha_{TFC} r_{PD} p_0$ I_{SIG} \triangleq RX input referred noise current; all sources Î_N \mathbf{i}_0 \triangleq RX input noise current density reference \triangleq RX input noise current loss vs. i₀ α_N BW \triangleq RX input noise bandwidth $= \alpha_{N} i_{0} \sqrt{BW}$ I_N $= (i_{SIG} / i_N)^2$ snr $\sqrt{\text{snr}} = \alpha_{OMA} \alpha_{RX} \sqrt{(\alpha_{SMF} \alpha_G \alpha_{AOP} \alpha_{TX})} \alpha_{TFC} r_{PD} p_0 / (\alpha_N i_0 \sqrt{BW})$

40

Ratio DD SNR to CH SNR: $\sqrt{(snr_{DD} / snr_{CH})}$

$$\begin{split} & \sqrt{snr_{DD}} &= \alpha_{OMA} \, \alpha_{RX} \, \alpha_{SMF} \, \alpha_{AOP} \, \alpha_{TX} \, r_{PD} \, p_0 \, / \, (\alpha_N \, i_0 \, \sqrt{BW}) \\ & \sqrt{snr_{CH}} &= \alpha_{OMA} \, \alpha_{RX} \, \sqrt{(\alpha_{SMF} \, \alpha_G \, \alpha_{AOP} \, \alpha_{TX})} \, \alpha_{TEC} \, r_{PD} \, p_0 \, / \, (\alpha_N \, i_0 \, \sqrt{BW}) \\ & r_{PD-DD} &\triangleq r_{PD-CH} \\ & BW_{DD} &\triangleq BW_{CH} \\ & \sqrt{(snr_{DD} \, / \, snr_{CH})} = \alpha_{OMA-DD} \, \alpha_{RX-DD} \, \alpha_{SMF} \, \alpha_{AOP-DD} \, \alpha_{TX-DD} \, \alpha_{N-CH} \\ & \quad / \, \alpha_{OMA-CH} \, \alpha_{RX-CH} \, \sqrt{(\alpha_{SMF} \, \alpha_G \, \alpha_{AOP-CH} \, \alpha_{TX-CH})} \, \alpha_{TEC} \, \alpha_{N-DD} \end{split}$$

Optical Δ SNR_{DD-CH} = SNR_{DD} - SNR_{CH} dB

 \triangleq loss in optical -dB Α $= -10\log_{10}(\alpha)$ Α $\Delta SNR_{DD-CH} = SNR_{DD} - SNR_{CH} = 10\log_{10}(snr_{DD} / snr_{CH})$ $\Delta SNR_{DD-CH}/2 = - (A_{AOP-DD} + A_{TX-DD} + A_{SMF})$ + $(A_{AOP-CH} + A_{TX-CH} + A_G + A_{SMF})/2 + A_{TFC}$ - $(A_{OMA-DD} + A_{RX-DD} - A_{N-DD})$ + $(A_{OMA-CH} + A_{RX-CH} - A_{N-CH})$ $A_{TX-T-DD} = A_{AOP-DD} + A_{TX-DD}$ $A_{RX-T-DD} = A_{OMA-DD} + A_{RX-DD} - A_{N-DD}$ $A_{TX-T-CH} = A_{AOP-CH} + A_{TX-CH} + A_G + 2A_{TEC} \qquad A_{RX-T-CH} = A_{OMA-CH} + A_{RX-CH} - A_{N-CH}$ $\Delta SNR_{DD-CH} = (A_{TXT-CH} - 2A_{TXT-DD}) - A_{SMF} + 2(A_{RXT-CH} - A_{RXT-DD})$

Outline

- NRZ vs HOM
- Serial vs WDM
- Coherent in Telecom
- Coherent in Datacom
- IMDD vs Coherent SNR
- Intra Datacenter Optics
- Appendix 2

Coherent (CH) w/ same TX Signal & LO Path

44

 $p_{IN-TX} = 4 \alpha_{LS} \alpha_{TEC} p_0$ $p_{TX} = \alpha_G \alpha_{AOP} \alpha_{TX} p_{IN-TX}$ $p_{IN-LO} = 4 (1 - \alpha_{LS}) \alpha_{TEC} p_0$ $i_{SIG} = \alpha_{OMA} r_{PD} 2 \sqrt{(p_{PD-RX} p_{PD-LO})}$ IEEE Photonics Society Summer Topicals 2020 TuA2.2

 $p_{RX} = \alpha_{SMF} \alpha_{TX}$ $p_{PD-RX} = \alpha_{RX} p_{RX} / 4$ $p_{PD-LO} = \alpha_{LO} \alpha_{SMF} \alpha_{G} \alpha_{AOP} \alpha_{TX} p_{IN-LO} / 4$ $i_{N} = \alpha_{N} i_{0} \sqrt{BW}$

Coherent (CH) RX Signal w/ same TX Signal & LO Path

$$\begin{split} i_{SIG} &\triangleq \text{RX balanced PD pair signal current} \\ i_{SIG} &= \alpha_{OMA} r_{PD} 2 \sqrt{(p_{PD-RX} p_{PD-LO})} \\ \alpha_{LS} &\triangleq \frac{1}{2} \quad \alpha_{LO} \triangleq \alpha_{RX} \\ i_{SIG} &= \alpha_{OMA} \alpha_{RX} \alpha_{SMF} \alpha_{G} \alpha_{AOP} \alpha_{TX} \alpha_{TEC} r_{PD} p_{0} \\ \text{Equal DD and CH total input AOP condition:} \\ p_{IN-DD-TX} &\triangleq p_{IN-CH-TX} + p_{IN-CH-LO} \\ i_{DD-SIG} &= i_{CH-SIG} \end{split}$$

When the LO is remote, i.e. it's a RO, there is no Coherent signal gain!

Same TX Signal and LO Path analysis approach proposed by Mike Frankel, Ciena, 18 Jan 2018.

Outline

- NRZ vs HOM
- Serial vs WDM
- Coherent in Telecom
- Coherent in Datacom
- IMDD vs Coherent SNR
- Intra Datacenter Optics
- Appendix 3

$\Delta SNR_{DD-CH} = SNR_{DD} - SNR_{CH}$ Examples

$\Delta SNR_{DD-CH}/2 =$

- A_{TX-DD} + $A_{TX-CH}/2$
- $A_{AOP-DD} + A_{AOP-CH}/2 + A_G/2 + A_{TEC}$
- $A_{SMF}/2$
- A_{RX-DD} + A_{RX-CH}
- A_{OMA-DD} + A_{OMA-CH}
- $-(-A_{N-DD}) + (-A_{N-CH})$

47

- // TX intrinsic
- // TX POP to AOP
- // TX scenarios
- // Link
- // RX intrinsic
- // RX AOP to average electrical// RX noise

TX Signal Path Intrinsic Loss Values

• $A_{TX} \triangleq TX$ path intrinsic loss, -dB

Ex. #	Implementation	DD loss value -dB	CH loss value -dB
11		A _{TX-DD}	A _{TX-CH}
1	Ideal TX & RX, no loss	0	0
2	DD CWDM4 TFF DML TX, RX CH SiP	4	14
3	DD CWDM4 TFF EML TX, RX CH SiP (ECOC'18 WS Example)	5	14
4	DD PSM4 SiP TX & RX CH SiP	6	14
5	DD CWDM4 SiP TX & RX, CH SiP	8	14

TX Modulation Loss

• α_{AOP} , $A_{AOP} \triangleq TX$ input POP to AOP modulation loss; linear, -dB

49

- = (er + 1) / (2 er) // Mod. TX POP to AOP loss α_{AOP-NRZ} [er] $\alpha_{AOP-NR7}$ [er] = 1 = (er + 1)/(2 er) // Mod. TX POP to AOP loss $\alpha_{AOP-PAM4}$ [er] $\alpha_{AOP-PAM4}$ [er] = 1
- $\alpha_{AOP-QPSK}$ $[v_{MD} = 2V_{\pi}] = 1$ $\alpha_{AOP-QPSK}$ [V_{MD} = V_m] = 1/2 $\alpha_{\text{AOP-QAM16}} [v_{\text{MD}} = 2V_{\pi}] = 5/9$ $\alpha_{AOP-QAM16} [v_{MD} = V_{\pi}] = 5/18$
- Equal DD & CH TX modulation drive $V_{\text{MD-DD(max)}} \triangleq \frac{1}{2} V_{\text{MD-CH(max)}}$ $V_{MD-CH} = V_{\pi}$

// DML TX, no loss

// DML TX, no loss

TX Modulation Loss Values

• $A_{AOP} \triangleq TX$ input POP to AOP modulation loss, -dB

mod. loss	ER	DD mod. loss value -dB		DD DM loss value -dB	
variable	dB	NRZ	PAM4	NRZ	PAM4
	ø	3.0	3.0	0.0	0.0
A _{AOP-DD}	7	2.2	2.2	0.0	0.0
	4.8	1.8	1.8	0.0	0.0

mod. loss		CH loss value -dB		CH loss value -dB / 2	
variable	• _{MD}	QPSK	QAM16	QPSK	QAM16
٨	$2V_{\pi}$	0.0	2.6	0.0	1.3
A _{AOP-CH}	V _π	3.0	5.6	1.5	2.8

TX Scenarios

 α_{TEC}, A_{TEC} 	≜ TX _{CH} input POP loss, laser TEC current; linear, -dB
 α_G, A_G 	≜ TX _{CH} optical gain expressed as loss
Scenario 1: equal	laser DC power (40% efficient CH TEC)
i Laser-bias-DD	≜ i _{Laser-bias-CH} + i _{Laser-TEC-CH}
α_{TEC}	≜ 0.4
α_{G}	≜ 1
Scenario 2: equal	I TX & LO total input POP (no CH TEC)
p _{IN-TX-DD}	≜ p _{IN-TX-CH} + p _{IN-LO-CH}
α_{TEC}	≜ 1
α_{G}	≜ 1

TX Scenarios, cont.

Scenario 3: equal TX total output AOP (no DC power limit)

 $\begin{array}{ll} p_{TX\text{-}DD} & \triangleq p_{TX\text{-}CH} \\ A_{TX\text{-}DD} + A_{AOP\text{-}DD} & = A_G + A_{TX\text{-}CH} + A_{AOP\text{-}CH} + A_{LS} + A_{TEC} \\ \alpha_{TEC} & \triangleq 1 \\ A_{TEC} & = 0 \\ \alpha_{LS} & = 0 \\ \alpha_{LS} & \triangleq 1/2 \\ A_{LS} & = 3 \\ - A_G/2 & = ((A_{TX\text{-}CH} + A_{AOP\text{-}CH} + 3) - (A_{TX\text{-}DD} + A_{AOP\text{-}DD}))/2 \end{array}$

52

TX Scenarios Loss Values

- $A_G \triangleq TX_{CH}$ optical gain expressed as loss
- $A_{TEC} \triangleq TX_{CH}$ input POP loss due to laser TEC current, -dB

	∆SNR _{DD-CH} / 2 TX Scenario	CH loss variable	CH loss value -dB	CH loss variable	CH loss value -dB
1	Equal laser DC power	A _G /2	0	A _{TEC}	4
2	Equal total input AOP	A _G /2	0	A _{TEC}	0
3	Equal TX total output AOP	A _G /2	formula on p.52	A _{TEC}	0

TX Scenarios: Coherent Unequal SIG/LO Split Loss

$$\begin{array}{ll} & \alpha_{ALS}, A_{ALS} & \triangleq Unequal SIG/LO \ split \ \alpha_{LS} \neq \frac{1}{2} \ loss; \ linear, \ -dB \\ & \alpha_{ALS} & = 2 \ \sqrt{(\alpha_{LS} (1 - \alpha_{LS}))} \\ & \alpha_{LS} & \triangleq 1/2 \\ & A_{ALS} & = 0 \\ & \alpha_{LS} & \triangleq 2/3 \\ & A_{ALS} & = 0.3 \\ \hline & A_{OMA-CH} & = A_{OMA-CH} + A_{ALS} \end{array}$$

	V _{MD}	CH loss value -dB			
mod. loss variable		$\alpha_{LS} = 1/2$		$\alpha_{LS} = 2/3$	
		QPSK	QAM16	QPSK	QAM16
۸,	2V _π	0.0	0.0	0.3	0.3
A _{OMA-CH}	V _π	0.0	0.0	0.3	0.3

Link Loss Values

- $A_{SMF} \triangleq$ Link total power loss (connectors, SMF, other passives), -dB
- Standard datacenter link loss budget

 $A_{\text{SMF}} \triangleq 4$

DD loss value -dB	CH loss value -dB
A _{SMF}	A _{SMF} /2
4.0	2.0

RX Signal Path Intrinsic Loss Values

- $A_{RX} \triangleq RX$ path intrinsic loss, -dB
- $A_{LO} \triangleq RX LO path intrinsic loss, -dB: A_{LO-CH} \triangleq A_{RX-CH}$

Ex. #	Implementation	DD loss value -dB	CH loss value -dB
		A _{RX-DD}	A _{RX-CH}
1	ldeal TX & RX, no loss	0	0
2	DD CWDM4 TFF DML TX, RX CH SiP	2	4
3	DD CWDM4 TFF EML TX, RX CH SiP (ECOC'18 WS Example)	2	4
4	DD PSM4 SiP TX & RX CH SiP	2	4
5	DD CWDM4 SiP TX & RX, CH SiP	4	4

RX Modulation Loss

- α_{OMA} , $A_{OMA} \triangleq RX PD AOP$ to average electrical signal power loss; linear, -dB
- $\alpha_{OMA-NRZ}$ [er] = (er 1)/(er + 1) // ½ * AOP to OMA loss $\alpha_{OMA-PAM4}$ [er] = $\sqrt{(5/9)(er 1)/(er + 1)}$ // ½ * AOP to OMA loss
- $\begin{array}{ll} & \alpha_{OMA-QPSK} & [v_{MD}=2V_{\pi}] & = 1 \\ & \alpha_{OMA-QPSK} & [v_{MD}=V_{\pi}] & = 1 \\ & \alpha_{OMA-QAM16} & [v_{MD}=2V_{\pi}] & = 1 \\ & \alpha_{OMA-QAM16} & [v_{MD}=V_{\pi}] & = 1 \end{array}$
- Equal DD & CH TX modulation drive

 $V_{\text{MD-DD(max)}} \triangleq \frac{1}{2} V_{\text{MD-CH(max)}}$ $V_{\text{MD-CH}} = V_{\pi}$

RX Modulation Loss Values

• $A_{OMA} \triangleq RX PD AOP$ to average electrical signal power loss, -dB

Mod. loss	ER	DD Mod. loss value -dB		DD DM loss value -dB	
variable	dB	NRZ	PAM4	NRZ	PAM4
	∞	0.0	1.3	0.0	1.3
A _{OMA-DD}	7	1.8	3.0	1.8	3.0
	4.8	3.0	4.3	3.0	4.3

Mod. loss	V _{MD}	CH loss value -dB		
variable		QPSK	QAM16	
A _{OMA-CH}	$2V_{\pi}$	0.0	0.0	
	V_{π}	0.0	0.0	

58

RX Input Referred Noise Current Loss Values

- $A_N \triangleq RX$ input noise current density loss vs. reference, -dB
- $\alpha_N i_0 \triangleq RX$ input noise current density
- RX input noise current density values

$$\begin{array}{ll} \alpha_{\text{N-DD}} \ i_0 &= 12 p \text{A} \, / \, \sqrt{\text{Hz}} \\ \alpha_{\text{N-DD}} &\triangleq 1 \\ i_0 &= 12 p \text{A} \, / \, \sqrt{\text{Hz}} \\ \alpha_{\text{N-CH}} \ i_0 &= 20 p \text{A} \, / \, \sqrt{\text{Hz}} \\ \alpha_{\text{N-CH}} &= 5/3 \end{array}$$

DD loss value -dB	CH loss value -dB
A _{N-DD}	A _{N-CH}
0.0	-2.2

Ex.1: $\Delta SNR_{DD-CH}/2$ Ideal TX & RX no loss

Ex. 1 ∆SNR _{DD-CH} /2 dB		DD loss var.	DD Ideal TX ER = ∞ loss value -dB		CH loss var.	CH Ideal TX $v_{MD} = V_{\pi}$ loss value -dB		
	Loss Type	A _{DD}	NRZ	PAM4	A _{CH}	QPSK	QAM16	
ТХ		A _{AOP} A _{TX}	3.0 3.0 0		A _{AOP} /2 A _{TX} /2	1.5 2.8 0		
1	Equal laser DC power		0.0			4	4.0	
2	Equal total input AOP	n/a	C).0	A _G /2 + A _{TEC}	0.0		
3	Equal TX output AOP		C).0		-1.5	-2.8	
	Link	A _{SMF}	4		A _{SMF} /2	2		
		A _{RX}	0		A _{RX}	0		
	RX	A _{OMA}	0.0	1.3	A _{OMA}	0.0	0.0	
		- A _N	C).0	- A _N	2.2		
1. Equal laser DC power		2. Equa	2. Equal total input AOP		3. Equa	3. Equal TX output AOP		
NR.	Z - QPSK PAM4 - QAM1	6 NRZ - 0	QPSK PAN	/14 - QAM1	6 NRZ - QI	PSK PAM₄	4 - QAM16	
	2.7 2.7	-1.3	3	-1.3	-2.8		-4.1	

Ex.2: $\Delta SNR_{DD-CH}/2$ DD CWDM TFF, DML TX

Ex. 2 ∆SNR _{DD-CH} /2 dB		DD loss var.	DD CWDM4 TFF, DML TX ER = 4.8 loss value -dB		CH loss var.	$\overrightarrow{CH SiP} \\ TX v_{MD} = V_{\pi} \\ loss value -dB$		
	Loss Type	A _{DD}	NRZ	PAM4	A _{CH}	QPSK	QAM16	
	ТХ	A _{AOP} A _{TX}	0.0 0.0		A _{AOP} /2 A _{TX} /2	1.5	1.5 2.8 7	
1	1 Equal laser DC power		0.0			4	4.0	
2	Equal total input AOP	n/a		0.0	A _G /2 + A _{TEC}	0.0		
3	Equal TX output AOP			0.0		-8.0	-9.3	
	Link	A _{SMF}	4		$A_{SMF}/2$	2		
		A _{RX}	2		A _{RX}		4	
	RX	A _{OMA}	3.0	4.3	A _{OMA}	0.0	0.0	
		- A _N		0.0	- A _N	2.2		
1.	1. Equal laser DC power		2. Equal total input AOP		3. Equa	3. Equal TX output AOP		
NR	Z - QPSK PAM4 - QAM1	6 NRZ - 0		AM4 - QAM1	6 NRZ - QI	PSK PAM4	4 - QAM16	
	7.7 7.7	3.7	7	3.7	-4.3		-5.5	

61

Ex.3: Δ SNR_{DD-CH}/2 DD CWDM TFF, EML TX

Ex. 3 (ECOC'18 WS Ex.) ∆SNR _{DD-CH} /2 dB		DD loss var.	DD CWDM4 TFF, EML TX ER = 7 loss value -dB		CH loss var.	CH SiP TX $v_{MD} = V_{\pi}$ loss value -dB			
		Loss Type	A _{DD}	NF	RZ	PAM4	A _{CH}	QPSK	QAM16
		ту	A _{AOP}	2.	2	2.2	$A_{AOP}/2$	1.5	2.8
			A _{TX}		Ę	5	$A_{TX}/2$		7
	1 Eo	qual laser DC power		0.0		• • • •	4.0		
	2 E	qual total input AOP	n/a	0.0		A _G /2 + A _{TEC}	0.0		
	3 E	qual TX output AOP		0.0			-6.4	-7.7	
	Link		A _{SMF}	4		$A_{SMF}/2$	2		
			A _{RX}	2		A _{RX}	4		
		RX	A _{OMA}	1.	8	3.0	A _{OMA}	0.0	0.0
			- A _N	0.0		- A _N	2.2		
	1. Equal laser DC power		2. Equa	2. Equal total input AOP		3. Equa	3. Equal TX output AOP		
ſ	NRZ - QPSK PAM4 - QAM16		6 NRZ - 0	QPSK	PAN	14 - QAM16	6 NRZ - QI	PSK PAM	4 - QAM16
	5.	7 5.7	1.7	1.7		1.7	-4.6		-5.9
sS	s Society Summer Topicals 2020		TuA2.2	TuA2.2 62				14 July 2020)

Ex.4: $\Delta SNR_{DD-CH}/2$ DD PSM4 SiP

Ex. 4 ∆SNR _{DD-CH} /2 dB		DD loss var.	DD PSM4 SiP TX ER = 7 loss value -dB		CH loss var.	CH SiP TX v _{MD} = V _π loss value -dB		
	Loss Type	A _{DD}	NRZ	Z	PAM4	A _{CH}	QPSK	QAM16
ТХ		A _{AOP} A _{TX}	2.2 2.2 6		A _{AOP} /2 A _{TX} /2	1.5 2.8 7		
1	Equal laser DC power		0.0)		4.0	
2	Equal total input AOP	n/a	0.0			A _G /2 + A _{TEC}	0.0	
3	Equal TX output AOP		0.0				-5.9	-7.2
	Link	A _{SMF}	4		$A_{SMF}/2$	2	2	
		A _{RX}	2		A _{RX}	4	4	
	RX	A _{OMA}	1.8	6	3.0	A _{OMA}	0.0	0.0
			0.0			- A _N	2.2	
1. Equal laser DC power		2. Equa	2. Equal total input AOP		3. Equal TX output AOP		AOP	
NR	Z - QPSK PAM4 - QAM1	6 NRZ - 0		PAM4	- QAM16	6 NRZ - QF	PSK PAM4	- QAM16
	4.7 4.7	0.7	7		0.7	-5.1		-6.4

Ex.5: $\Delta SNR_{DD-CH}/2$ DD CWDM4 SiP

Ex. 5 ∆SNR _{DD-CH} /2 dB		DD loss var.	DD CWDM4 SiP TX ER = 7 loss value -dB		CH loss var.	$CH SiP$ $TX v_{MD} = V_{\pi}$ loss value -dB	
	Loss Type	A _{DD}	NRZ	PAM4	A _{CH}	QPSK	QAM16
ТХ		A _{AOP} A _{TX}	2.2 2.2 8		A _{AOP} /2 A _{TX} /2	1.5 2.8 7	
1	Equal laser DC power		0.0 n/a 0.0			4	.0
2	Equal total input AOP	n/a			$A_G/2$	0.0	
3	Equal TX output AOP		().0	INTEC	-4.9	-6.2
	Link	A _{SMF}	4		$A_{SMF}/2$	2	
		A _{RX}	4		A _{RX}	4	
	RX	Aoma	1.8	3.0	A _{OMA}	0.0	0.0
		- A _N	0.0		- A _N	2.2	
1. Equal laser DC power		2. Equ	2. Equal total input AOP		3. Equa	3. Equal TX output AOP	
NR	Z - QPSK PAM4 - QAM	16 NRZ - (M4 - QAM1	6 NRZ - Q	PSK PAM4	4 - QAM16
0.7 0.7		-3.	3	-3.3	-8.1		-9.4

$\Delta SNR_{DD-CH} dB Examples, 4dB SMF Link Loss$

∆SNR _{DD-CH} dB Scenario		Scenario	1. Equal laser DC power		2. Equal total input AOP		3. Equal TX output AOP	
Ex. #	TX & RX Implementation		NRZ - QPSK	PAM4 - QAM16	NRZ - QPSK	PAM4 - QAM16	NRZ - QPSK	PAM4 - QAM16
1	1 Ideal TX & RX no loss DD ER = ∞, CH $v_{MD} = V_{\pi}$		5.4		-2.6		-5.6	-8.1
2	DD CWDM4 TFF DML TX ER = 4.8, SiP CH $v_{MD} = V_{\pi}$		15.4		7.4		-8.6	-11.1
3	DD CWDM4 TFF EML TX ER = 7, SiP CH $v_{MD} = V_{\pi}$		11.5		3.5		-9.3	-11.8
4	DD PSM4 SiP TX ER = 7, SiP CH v	$X_{MD} = V_{\pi}$	9.5		1.5		-10.3	-12.8
5	DD CWDM4 SiP ER = 7, SiP CH v	TX $V_{MD} = V_{\pi}$	1.5		-6.5		-16.3	-18.8

Coherent vs. IMDD SNR Examples Conclusion

Application	Direct Detection	NRZ / PAM4 SNR	SNR	Coherent QPSK / QAM16 SNR		
Аррпсаціон	ТХ	RX	Relation	ТХ	RX	
Laser DC Power	EML, DML single λ or TFF, PLC WDM	PIN single λ or TFF, PLC WDM	>>	SiP	SiP	
Constrained	single λ SiP (PSM)	single λ SiP (PSM)	>>	SiP	SiP	
4dB Link Loss	WDM SiP	WDM SiP	~	SiP	SiP	
TX Out Power Constrained	Any	PIN	<<	SiP	SiP	

For most intra datacenter links, IMDD has better SNR than Coherent, contrary to conventional wisdom.

IMDD vs Coherent Appendices

Thank You

www.ieee-sum.org

IEEE Photonics Society

IEEE Photonics Society Summer Topicals 2020 TuA2.2

67

14 July 2020

Chris Cole